电子新闻网

数据挖掘与商业智能有什么联系

  随着时代的发展,人类产生的数据成倍增长,数据的开放性应用和数据可挖掘价值越来越高。在大数据精准营销、大数据洞察等一系列热词背后,正是数据挖掘、分析技术发挥着重要的作用。数据挖掘技术不仅成为当今政务部门提升治理能力的重要手段,也成为各行各业提升核心竞争力的关键。

  数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但有潜在的有用信息和知识的过程。

  可以看出,数据挖掘是一个过程结果的称谓,即主要目标是从数据中挖取隐藏的信息。它是一个交叉科学领域,受多个学科影响,包括数据库系统、统计、机器学习、可视化和信息科学。

  通过统计购买某产品的多数来自北京,则北京是该产品的主要消费者居住的城市,这就是用的商业智能技术。

  要从100000人中找出100个购买某产品概率比较大的客户,则可以通过利用统计方法建立数学模型找到这群人,而这就要用数据挖掘技术。

  商业智能就是目标明确的创建统计分析报表,根据统计结果,提供商业决策支持,输入的是数据,输出的是信息。

  数据挖掘则是透过数据的表象发现隐藏在背后的蛛丝马迹,从而找到潜伏的规律以及看似无关事物之间背后的联系,用此来洞察或预测未知事项,输入的是数据,输出的是知识。

  利用数据挖掘技术,对大量的业务数进行探索和分析揭示隐藏的、未知的规律,是商业智能的高级应用。

  分类与回归本质上解决的都是预测问题,不同的是分类适用于离散型目标变量的预测,而回归适用于连续型目标变量的预测。下面这些问题可以用分类和回归技术来解决:

  中国有句古话是“物以类聚,人以群分”,其实已经蕴含了聚类算法的基本思想。聚类能解决如下方面的问题:

  关系网络分析用来探索社会行动者及其间的关系,例如:社会关系、亲属关系、角色关系、行为关系、流动关系、地理空间关系等等。

  关系网络分析也叫社会网络分析。通过社会网络分析,可以探索和发现行动者之间隐藏的关系。常见的关系有:

  数据挖掘与商业智能有什么联系.中琛魔方大数据分析平台(表示数据挖掘是针对的是海量复杂的数据,它是伴随着数据库理论,机器学习,人工智能,现代统计学的迅速发展而出现的一种新型交叉性的技术。需要数据挖掘模型的客户群通常都十分庞大,由于它需要复杂的算法、统计模型和大量的数据,所以需要支持大数据量的处理能力,像并行算法和网格计算是极其必要的。

  邮箱:、(内容合作)、463652027(商务合作)、645262346(媒体合作)我知道了×个人登录

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。